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ABSTRACT: General and singular subcellular events within
the ligand-dependent receptor-mediated cellular response were
separated by using the Jurs and the electrotopological state
(ES) descriptors, allowing characterization of the significant
structural modifications in a given set of collected peroxisome
proliferator-activated receptor γ (PPARγ) agonists. The iden-
tified Jurs descriptor is the integrated function of all the
general events but is scaffold-dependent. The top captured ES
descriptors stand for significant structural modifications, i.e.,
singular events. To further elucidate the descriptor-event rela-
tionship, three biological data sets show that the Jurs descrip-
tor can be further divided into three important descriptors,
the log D, polar surface area, and shape-like descriptor. The
identification of the essential descriptors for general events is the first regression, and the prioritization of all the possible
structural modifications of the 46 collected thiazolidinedione PPARγ agonists is the second regression. As results, the top
captured ES symbols can correspond to the singular ligand−receptor interactions as highlighted in the X-ray crystallographic
image of rosiglitazone−PPARγ complex.

1. INTRODUCTION
Ligand-dependent receptor-mediated cellular data (ligand
cellular data) have long been considered an inadequate source
for the analysis of ligand−receptor interactions, as they contain
many confounding factors. To analyze the ligand cellular data,
general and singular subcellular events in the ligand-dependent
receptor-mediated cellular response were separated by using
the Jurs1 and the electrotopological state (ES) descriptors,2−4

allowing characterization of the significant structural mod-
ifications in given collected peroxisome proliferator-activated
receptor gamma (PPARγ) agonists; the proposed framework
of molecular description is illustrated in Figure 1. In cellular
response, some alterations of molecular recognition, e.g., hydrogen-
bond formation or deformation, can cause drastic alteration
in activity. These particular structural modifications as singular
events are considered to be statistical breakdown points for
many correct analyses, i.e., outliers of statistic regression, also
known as activity cliffs.5,6 An activity cliff comes from a singular
subcellular event. The possible structural modifications in a
given set of agonists are predefined here by ES descriptors,
and all the ES descriptors can be statistically prioritized through
a “second regression”. The first regression is to identify the
descriptor or descriptors suitable for the representation of
general subcellular events, and the second regression is to
prioritize the ES descriptors for singular events.
A two-stage regression has been formulated to analyze the

collected thiazolidinedione (TZD) PPARγ agonists.7 One of

the resulting outcomes is shown in Figure 2: The descriptor,
Jurs_RNCG, was selected from first regression, and the ES
descriptor, ES_Count_ssO, was prioritized in order of potency.
The former indicates an integrated description of all the
possible general subcellular events of the agonists. The latter,
acting as the outlier of the first regression, was captured
through the statistical prioritization of the second regression.
This top-captured ES descriptor also indicates that the
significant structural modification of ether linkage (ssO) cor-
responds to the singular ligand−receptor interaction, which can
be shown in the X-ray crystallographic image of the potent
ligand−PPARγ complex,8 also in Figure 2. In this mapping
of general and singular subcellular events with Jurs and ES
descriptors, one can directly prioritize the potency order of
“informative outlier”, as a so-called activity cliff,5,6 from ligand-
dependent receptor-mediated cellular data.
Furthermore, in order to elucidate the descriptor-event re-

lationship of general subcellular events, we used three biological
data sets to demonstrate that the Jurs descriptor can further be
divided into more subtle descriptors. The first data set is a
collection of 110 topoisomerase I (TopI) inhibitors,9,10 which
shows log D as a most important descriptor in the inhibitor-
dependent cellular response. The second data set is composed
of 72 analogs11,12 of raloxifene with both cell-based and cell-free
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data, which shows polar surface area (PSA) the most important
factor counting for the difference between cell-based and cell-
free responses. The third data set employs 46 TZD PPARγ
agonists,7,13,14 which shows that the Jurs_RNCG descriptor1

can be further divided into the three descriptors, log D, PSA,
and a shape-like descriptor. These identifications of the three
former subtle descriptors for all the general subcellular events
comprised of the first regression. The significant structural
modifications in the 46 collected TZD PPARγ agonists7,13,14

as informative outliers are the singular subcellular events.
Through second regression, all the ES descriptors of the
agonists were statistically prioritized. As a result, the top cap-
tured ES descriptors can also find their corresponding singular
interactions of molecular recognition, which were highlighted

in the X-ray crystallographic image of the rosiglitazone−PPARγ
complex.

2. THE ROLE OF LOG D

2.1. TopI Inhibitors. A total of 110 nonredundant TopI
inhibitors had been created by a single lab in a decade-long
synthesis endeavor9,10 spanning from 1999 to 2008. The ligand
(inhibitor) cellular phenomenon is the cell growth inhibition
caused by the inhibition of TopI (a protein involved in DNA
topology modification). These inhibitors were tested in 55 cell
lines obtained from the National Cancer Institute (NCI) that
represented a range of cancer cell types, including lung (HOP-
62), colon (HCT-116), central nervous system (SF-539),
melanoma (UACC-62), ovarian (OVCAR-3), renal (SN12C),

Figure 1. Illustrations of overall molecular description in the subcellular event-based analysis of singular events, significant structural modifications
(ES descriptors), for a set of agonists. A two-stage regression is employed. The descriptor, Jurs, is the integrated function representing the
combination of general subcellular events.

Figure 2. One of the resulting equations results from a two-stage regression to the TZD PPARγ agonists. The Jurs_RNCG is from first regression
and the descriptor ES_Count_ssO from second regression. The ES symbol, ssO, indicates singular ligand−receptor interactions, as shown in the
X-ray crystallographic image (PDB code: 2PRG), in which the singular interactions are between the rosiglitazone tyrosine oxygen (ssO) and the
sulfurs of the PPARγ residues Cys285 and Met364; the respective distances (in green) are 3.79 and 4.70 Å. The chemical structure of rosiglitazone is
at the bottom right, and the oxygen is in red.
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prostate (DU-145), and breast (MDA-MB-435) cancers. The
110 TopI inhibitors used were selected for having definite
experimental values for GI50, the concentration producing 50%
growth inhibition, for the above 8 cell lines explicitly listed in
the literature. The inhibitors which had indefinite experimental
values, i.e., with the mathematical greater than or less than sym-
bols, were excluded from analysis. The mean graph midpoint
(MGM) values were averaged from the GI50 values over all 55
cell lines, and the details were described in the experimental
sections of the related papers.9,10 Overall, the MGM value
represents overall cell growth inhibition by a TopI inhibitor
across the NCI cell lines. The ligand-dependent cellular pheno-
menon is the cell growth inhibition resulting from inhibition of
the TopI enzyme. All 110 molecular structures and the experi-
mental inhibition values expressed as −log10(MGM), i.e.,
pMGM, are listed in Table S2.1, Supporting Information. All
inhibitor structures were geometrically optimized with respect
to energy by the molecular mechanism optimization program
MMF94 in the ChemBio3D suite from the ChemBioOffice
package.15

2.2. Most Important Descriptor in Ligand Cellular
Phenomenon. The selecting one descriptor out mechanism
(SODO mechanism) aims to use a suitable working equation to
measure any descriptor in order of potency. For the purpose
of selection, a simple linear equation is used. A measure of
the correlation between descriptor and biological activity in a
working equation is the least-squares fit. When Pearson’s
correlation coefficient is used as the fit, r2 is utilized to prioritize
the potential descriptors in order of rank. Note that in the
SODO mechanism, we use statistical quantity as a measure of
descriptor potency during this stage of descriptor-event mapp-
ing. For the inhibitor cellular phenomenon of TopI inhibitors,
we will choose the single most important descriptor in this
inhibitor cellular data. Mathematically, the dependent variable,
y, is the ligand-dependent enzyme-mediated cellular phenom-
enon. We seek the most representative descriptor, xch, as the
primary factor for the ligand cellular activity. The resulting
equation is as follows:

= β + βy x0 ch ch (1)

where y is the dependent variable standing for the ligand-
dependent enzyme-mediated cellular phenomenon, xch is the
descriptor to be chosen, and β0 and βch are the regression co-
efficients after the least-squares fit. Once the activity values for
the ligand cellular phenomena against a given set of molecules
are available, the correlation fit r2 can be obtained for each
descriptor from a specific descriptor pool. Here, more than 500
descriptors of eminent classes were employed. All descriptors
in the working equation with correlation fits are prioritized in
rank order of the regression fit. All calculation of descriptors
was performed using the Discovery Studio 2.1 QSAR module.16

The regression fitting for each descriptor in the working
equation and the Pearson’s coefficient were performed using R
2.11.0.17

2.3. Observations and Results. The MGM values were
the average inhibitions for all 55 NCI cancer cell lines, repre-
senting lung, colon, central nervous system (CNS), melanoma,
ovarian, renal, prostate, breast, and other cancers. The average
value means that no cancer type-dependent subcellular event
dominates and that the MGM is the combination of the
common subcellular biochemical events of each TopI inhibitor.
Therefore, these inhibitor cellular data are the perfect outcome
of a combination of all possible general subcellular events, which

may include solubility, membrane transport, cytosol mobility,
general degree of agonism, and general molecular recognition.
The first question in the framework of a subcellular event-based
approach is which of these general subcellular events can
be dominant. To answer this question, we used the SODO
mechanism to pick the single most representative descriptor
from a large data set containing 110 collective molecular
structures of TopI inhibitors.
The results, shown in Table S2.3, Supporting Information,

ranked the descriptors Molecular_Solubility and log D as most
important. Solubility is the solubility in water, and log D is the
partition coefficient. In fact, these 2 are mutually correlated, and
log D dominates in a smaller data set. As a general illustration
of the analysis, we will discuss the log D. Log D is the ratio of
concentrations of a small molecule in the two phases of a
mixture of two immiscible solvents (octanol and water) at
equilibrium. When an inhibitor is tested in cells, some of the
subcellular events are related to the log D. The first general
event related to log D is the solvent solubility, i.e., the ability of
a molecule to cross the gas−solvent interface. The second and
third general events are the solvent−membrane and membrane−
cytosol interfaces. However, these two latter events can be more
precisely represented by the PSA, as discussed later. The last
event is the solvation−desolvation prior to inhibitor binding.18 In
order to emphasize the general description of many related
subcellular interface events, we used log D as the most crucial
factor in an inhibitor cellular data set.
In addition, when the agonist set becomes larger and more

diversified, the structural modifications tend not to dominate
under these conditions. Here in Table 1, the dominant descrip-

tors detected by the SODO mechanism against the increasing
data set size are listed. Inhibitors of each data set size were
randomly selected 500 times. Each set of the same size was put
into the SODO mechanism, and the best of the 500 first-
selected descriptors was listed. We can clearly see that with data
set sizes of 10 and 20 inhibitors, the topological shape indices
(CHI_V_2, CHI_V_1)19,20 are dominant and the correlation
coefficients (r2 values) are 0.99 and 0.68. With data set sizes of
30 and 40 inhibitors, the ES descriptor (ES_Count_sNH2) is
dominant, and the correlation coefficients (r2 values) are 0.58
and 0.44. With data set sizes of more than 50 inhibitors, the
partition coefficient (log D) is dominant, although the cor-
relation coefficients (r2 values) decreased. When the data set
size is 110 inhibitors, the Molecular_Solubility is dominant.
As mentioned above, Molecular_Solubility and log D are

mutually correlated, and the effect of solvation−desolvation

Table 1. Dominant Descriptors Using Different Data Set
Sizes from the TopI Inhibitor Molecular System

data size dominant descriptor r2

10 CHI_V_2 0.99
20 CHI_V_1 0.68
30 ES_Count_sNH2 0.58
40 ES_Count_sNH2 0.44
50 log D 0.39
60 log D 0.31
70 log D 0.32
80 log D 0.30
90 log D 0.25
100 log D 0.18
110 Molecular_Solubility 0.11
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becomes dominant, although with decreasing r2, when the size
of the data set is larger than 50 inhibitors. Note that all of the
dominant descriptors for the various data set sizes listed in
Table 1 are ranked by the SODO mechanism in first place out
of more than 500 various descriptors. The dominant descrip-
tor of the inhibitors is the log D (or Molecular_Solubility),
revealing the most crucial subcellular biochemical event in the
55 NCI cell lines. Thus, in other words, the property log D is
the most important and necessary descriptor for consideration
underlying the ligand-dependent cellular data.

3. THE ROLE OF PSA
3.1. Estrogen Receptor (ER) Antagonists. To determine

the most crucial factor between cell-free and cell-based sys-
tems within a ligand cellular data, we compared 72 synthetic
analogs11,12 of raloxifene in two types of in vitro biological
assays, the cell-free radioligand binding assay and the cell-based
antiproliferation assay. The cell-free assay measured ERα-binding
affinities determined by displacement of bound radiolabeled
[3H]-17β-estradiol from MCF-7 cell lysates. The cell-based assay
assessed the antagonism of tested antagonists in the MCF-7 cell
line by measuring the inhibition of cell proliferation, which cell
growth is induced by 10−11 M 17β-estradiol. The results of both
experiments were reported in nanomolar units as IC50 and EC50,
respectively. The relative binding affinity (RBA) refers to the
comparison of binding of a given raloxifene analog to that of 2-β-
estradiol. The RIA refers to the relative inhibitory activity
compared that of raloxifene. Furthermore, the abbreviation
LRBA represents log10 of the RBA value, and the LRIA is the
log10 of the RIA. The final mathematical expressions of LRBA
and LRIA from cell-free and cell-based assays are shown in
Figure 3. The chemical structures of the raloxifene analogs

were modified around the benzothiophene core as shown in
Figure 4. Analogs that were listed in the literature without

definite assay quantities were not used in the analysis in order to
avoid introducing uncertainties. Twelve analogs were enantio-
meric, and we assumed that only one enantiomer possessed
binding activity, thus causing the active enantiomer to have half
of the IC50 value. This would then require that the RBA be

multiplied by 2 due to the chirality. All of the chemical structures,
LRIAs, and LRBAs of the 72 raloxifene analogs are listed in
Table S3.1, Supporting Information.

3.2. Most Important Descriptor between Cell-Based
and Cell-Free Phenomenon. The SODO mechanism
prioritizes given descriptors in order of potency with a suitable
working equation. To identify and better understand the
most crucial factor in cell-drug interaction responsible for the
discrepancies between cognate cell-based data and cell-free data
for ligand binding, a simple linear three-variable equation was
used. The working equation in the context of “cell-based
phenomena = a(cell-free phenomena) + b(descriptor to be
chosen) + c” is as follows:

= β + β + β‐ ‐ ‐y x xcell based 0 cell free cell free ch ch (2)

where ycell‑based is the cell-based antiproliferation data, xcell‑free is
the cell-free radioligand binding data, xch is the descriptor to be
chosen, and β0, βcell‑free, and βch are the regression coefficients
after the least-squares fit. Thus, LRIA is ycell‑based, and LRBA is
xcell‑free. Once both the cognate cell-based and cell-free ligand-
binding data for a given set of inhibitors are available, the
correlation fit (r2) for each descriptor from a descriptor pool16

can be calculated. The SODO mechanism was thus applied to
more than 500 descriptor equations against the data obtained
for the 72 raloxifene analogs. All compounds were geometri-
cally optimized with respect to energy by the molecular mech-
anism MMF97 program from the ChemBio3D suite of the
ChemBioOffice software package.15

3.3. Observations and Results. The four descriptors with
best fits to the working equation are shown in Table 2. The

largest correlation coefficient for the working equation was r2 =
0.55 for the molecular descriptor Molecular_PolarSurfaceArea
(PSA).21 Molecular polar surface area is the surface area covered
by polar atoms and was interpreted as representative of passive
molecular transport through membranes. Since PSA emerged as
the most significant descriptor from a total of approximately 500
different descriptors, we considered the membrane transport of
an antagonist the most crucial subcellular event accounting for
the discrepancy between cell-based and cell-free data. We further
analyzed the following three top descriptors in the working
equation with highest correlation fits and assessed their mutual
correlations. These descriptors were Molecular_FractionalPolar-
SurfaceArea (FPSA),21 S_Count, and Molecular_PolarSASA
(PSASA).21 FPSA, fractional polar surface area, is the ratio of
the polar surface area to the total surface area. PSASA, polar
solvent accessible surface area, is the total polar solvent acces-
sible surface area for a molecule. S_Count is the number of
sulfur atoms in a molecule. We neglect S_Count here as it is
considered to be a structural modification rather than an effect
of the general subcellular events we are attempting to identify.
In Table 3, a correlation-coefficient (r, not r2) matrix is

calculated in order to examine whether the four indicated
descriptors are mutually independent and to determine their

Figure 3. Formulas for the LRBA and the LRIA. LRBA was deter-
mined from the cell-free assay and LRIA from the cell-based assay.

Figure 4. Raloxifene analogs are from the modifications of
benzothiophene core of raloxifene.

Table 2. First Four Ranking Descriptors and Their Fitting
Coefficients from the TopI Inhibitor Molecular System

rank descriptors r2

1 Molecular_PolarSurfaceArea 0.55
2 Molecular_FractionalPolarSurfaceArea 0.54
3 S_Count 0.52
4 Molecular_PolarSASA 0.52
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contributions to the LRIA. First, we infer from the first
coefficient column in Table 3 that LRBA is highly correlated
with LRIA. It is reasonable to interpret this as an indication that
the binding affinity of the raloxifene analogs plays the dominant
role in the growth inhibition of MCF-7 cells. On the other
hand, we also infer that the best four descriptors shown in
the first column of Table 3 display relatively small negative
correlations with LRIA. The minor contribution to LRIA for
each single descriptor indicates that LRIA is a phenomenon of
combined effects to which ligand binding is one of the most
important contributors. Therefore, the goal we have attempted
to achieve in this portion of the analysis is to determine which
parameter, besides ligand binding, of the cell-based phenom-
enon can be considered to be the crucial subcellular factor. The
four descriptors in the second column of Table 3 exhibit almost
no correlations with LRBA (the highest value being 0.196),
with three of the correlation coefficients falling within ±0.013.
This means that the four best descriptors can be regarded as
factors that are independent of molecular recognition. In the
remaining four columns of Table 3, PSA, FPSA, and PSASA
are highly mutually correlated. The correlation coefficients are
0.910 between PSA and FPSA, 0.937 between PSA and PSASA,
and 0.884 between FPSA and PSASA. The fact that three of the
four best descriptors are closely related indicates a common
mechanism of drug−cell interaction. Obviously, this points to
the passive transport through cell membrane. This membrane
event acts as the most important subcellular factor of these
raloxifene analogs in the MCF-7 cell line when counting for the
difference between cell-based and cell-free data. Thus, the PSA
is the most representative descriptor for the crucial subcellular
event of molecular membrane transport.

4. DIVISION OF THE JURS DESCRIPTOR INTO LOG D,
PSA, AND THE SHAPE-LIKE DESCRIPTOR

4.1. TZD PPARγ Agonists. A total of 46 compounds were
collected with the TZD moiety,7,13,14 an important class of
synthetic PPARγ agonists. PPARγ7 is a ligand-activated
transcription factor belonging to the nuclear hormone family.
Its biological functions are involved in the regulation of lipid
and glucose storage and catabolism, and it is an established
biological target for drug discovery. The PPARγ agonists bind
to the receptor as parts of the transactivation machinery that
activates the biological response, and this activity is usually
detected on a cellular basis. The indeterminate and uncertain
efficacy concentration (EC50) values were excluded. The EC50
values were expressed as negative log10 values before modeling.
The sources of the agonists and their log values are listed in
Table S4.1, Supporting Information. The most important
descriptor of the 46 PPARγ agonists with the TZD moiety is

the Jurs_RNCG. RNCG means the relative negative charge, the
quantity of the charge of the most negative atom divided by the
summation of the total negative charge in a molecule. Note that
the Jurs_RNCG thus can be an integrated function of all the
general subcellular events for the 46 collected TZD PPARγ
agonists.

4.2. Three Contributors to Jurs_RNCG. Log D and PSA,
the molecular descriptors identified from the above observa-
tions and results, can correspond to two crucial subcellular
events: molecular solvation−desolvation and membrane trans-
port. The Jurs_RNCG is the integrated description of all
the possible general subcellular events for these TZD PPARγ
agonists. To identify the third contributor to Jurs_RNCG, a
simple linear four-variable equation was used. The working
equation is as follows:

= β + β + β + βD xJursRNCG log PSAD0 log PSA ch ch

(3)

where Jurs_RNCG is the calculated descriptor of 46 TZD
PPARγ agonists. RNCG means the relative negative charge,
the quantity of the charge of the most negative atom divided by
the sum of the total negative charge of a molecule, log D is the
calculated partition coefficient, PSA is the calculated polar
surface area, xch is the descriptor to be chosen, and β0, βlog D,
βPSA, and βch are the regression coefficients after the least-
squares fit. The chosen descriptor is selected from a set of more
than 500 molecular descriptors. The least-squares fitting was
performed using R 2.11.017 and was applied to the descriptor
equations against the calculated data on the TZD PPARγ
agonists. Prior to descriptor calculation, the geometries of
the molecular structures were optimized using the molecular
mechanics program MMF97.15

4.3. Observations and Results. Table 4 lists the top 16
equations after the SODO selection. There, the 16 top selected
descriptors are indices of topological shape (Kappa_1, Kappa_
1_AM, CHI_V_0, CHI_0), electronic energy (Electronic_
Energy, Total_Energy), electric multipole moment (Dipole_mag,
Mean_Polarizability, Apol), molecular weight (MOLWEIGHT
Molecular_Mass, Molecular_Weight, Organic_Count), and the
molecular surface (Molecular_SASA, Molecular_SurfaceArea).
In eq 3, log D represents the solvation−desolvation effect
and PSA represents membrane transport in the subcellular
event-based approach. Among them, the solubility and cytosol
mobility are apparently related to the log D and the membrane
transport to PSA. The general degree of agonism and general
ligand−receptor interaction remains as the subcellular events
possibly contributing to Jurs_RNCG. One observation is that
the Dipole_mag in Table 4 has a significant impact on the log
D when the correlation coefficient of log D changes from
the average to the lowest, −0.006, and on the PSA when the
correlation coefficient of PSA changes from the average to the
lowest, −0.0002. Therefore, except for the electric moment or
multipole moment, through observations of Table 4 we infer
that the molecular surface, molecular weight, or even electronic
energy is the descriptor for the description of the contact shape
of molecular recognition. Therefore, based on the above ob-
servations of the descriptor-event relationships, the Jurs_RNCG
of TZD PPARγ agonists can be or is postulated to be divided
into three important descriptors: log D, PSA, and the shape-like
descriptor.

Table 3. Correlation Coefficient Matrixa

LRIA LRBA PSA FPSA SC PSASA

LRIA 1.000
LRBA 0.687 1.000
PSA −0.284 0.004 1.000
FPSA −0.126 0.196 0.910 1.000
SC −0.225 0.005 0.313 0.321 1.000

PSASA −0.237 −0.013 0.937 0.884 0.262 1.000
aLRIA: cell-based Data; LRBA: cell-free Data; PSA: Molecular_
PolarSurfaceArea; FPSA: Molecular_FractionalPolarSurfaceArea; SC:
S_Count; and PSASA: Molecular_PolarSASA.
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5. CHARACTERIZATION OF SIGNIFICANT
STRUCTURAL MODIFICATIONS THROUGH SECOND
REGRESSION
5.1. Indentification of Log D, PSA, and Mass as First

Regression. In order to understand the descriptor-event
relationship of the subcellular event-based QSAR analysis, we
have demonstrated that the Jurs_RNCG can be divided
into the log D, PSA, and shape-like descriptors. Among the
subcellular events, log D is the general description of solvation
and desolvation, PSA is the description of membrane trans-
port, and the shape-like descriptor is the description of general
ligand−receptor interaction. In other words, the Jurs_RNCG
for the molecular system of PPARγ agonists is dependent
on the log D, PSA, and the shape-like descriptor. This means
that the Jurs_RNCG is dependent on the general molecular
scaffold, i.e., “general shape” of ligand−receptor binding. In this
analysis, the shape-like descriptors for the general binding
description can be many, as demonstrated in Section 4.3.
However, to avoid fitting with singular events, we employ the
descriptor of molecular mass, mass, as the description of
general molecular recognition. Put together, the log D, PSA,
and mass can suitably represent the effect of all the general
subcellular events in cells.
5.2. Statistical Prioritization of ES Descriptors as

Second Regression. With the use of the descriptor of
molecular mass, a scaffold-independent event-based working
equation is designed here as follows:

= β + β + β + β

+ β

y D PSAlog Mass

ES

Dcellular 0 log PSA Mass

ES (4A)

where ycellular is the ligand cellular data, log D is the calculated
molecular partition coefficient, PSA is the calculated molecular
polar surface area, mass is the molecular mass representing
the general ligand−receptor interaction, ES is a ES descriptor

representing a predefined structural modification. β0, βlog D,
βPSA, βmass, and βES are the regression coefficients after the least-
squares fit. Log D, PSA, and mass were identified for general
events, and all the ES descriptors are going to be prioritized for
singular events.
Through first regression, log D, PSA, and mass are identified,

and through second regression, the structural modifications of
ES descriptors in the 46 collected TZD PPARγ agonists were
statistically prioritized by using eq 4A. Figure 5 illustrated the
overall concept of this approach. The descriptors, log D, PSA,
and a shape-like descriptor, are scaffold-independent, represent-
ing the combination of general subcellular events. The signif-
icant structural modifications, indicated by the top captured ES
descriptors, can directly correspond to the singular interactions
of molecular recognition.

5.3. Ordering of ES Descriptors with Different
Representation of General Events. Through the separa-
tion of general and singular events as illustrated in Figure 1,
Jurs_RNCG is taken as the integrated function of all possible
subcellular general events. The corresponding working
equation is as follows:

= β + β _ + β_y xJurs RNCGcellular 0 Jurs RNCG ES ES

(4B)

where ycellular is the ligand cellular data, Jurs_RNCG is the
calculated Jurs descriptor, and xES is the descriptor to be chosen
from the ES descriptors for the subcellular structural modifica-
tions.
For examination of the ordering of ES descriptors with

different representation of all possible general events, all ES
descriptors of the 46 TZD PPARγ agonists were prioritized
with eq 4B. The resulting 14 top ES descriptors are listed in
order in the first column of Table 5. The top ES symbol, ssO,
which indicates the singular ligand−receptor interaction, has
been correlated with the crystallographic image, as shown in

Table 4. The 16 Top Equations from the SODO Mechanism in the Molecular System of the 46 TZD PPARγ Agonists

16 top equations r2

_ = + + − _ +DJurs RNCG 0.020log 0.0012PSA 0.012 Kappa1 0.21 0.75

_ = + + − _ _ +DJurs RNCG 0.021log 0.0014PSA 0.013Kappa 1 AM 0.19 0.75

_ = + + + _ +DJurs RNCG 0.019log 0.0012PSA 0.000005Electronic Energy 0.12a 0.74

_ = + + − _ _ +DJurs RNCG 0.024log 0.0012PSA 0.018CHI V 0 0.23 0.73

_ = − − + _ +DJurs RNCG 0.006log 0.0002PSA 0.004Dipole mag 0.18 0.72

_ = + + − +DJurs RNCG 0.022log 0.0013PSA 0.0007MOLWEIGHT 0.22a 0.71

_ = + + − _ +DJurs RNCG 0.029log 0.0014PSA 0.008Mean Polarizability 0.23a 0.71

_ = + + − _ +DJurs RNCG 0.022log 0.0013PSA 0.0007Molecular Mass 0.22 0.71

_ = + + − _ +DJurs RNCG 0.022log 0.0013PSA 0.0007Molecular Weight 0.22 0.71

_ = + + − _ +DJurs RNCG 0.024log 0.0013PSA 0.0007Molecular SAVol 0.28 0.71

_ = + + − _ +DJurs RNCG 0.020log 0.0011PSA 0.014CHI 0 0.24 0.71

_ = + + − _ +DJurs RNCG 0.026log 0.0013PSA 0.0006Molecular SASA 0.29 0.71

_ = + + − _ +DJurs RNCG 0.029log 0.0019PSA 0.001Molecular SurfaceArea 0.21 0.70

_ = + + − +DJurs RNCG 0.019log 0.0009PSA 0.000014Apol 0.21 0.67

_ = + + + _ +DJurs RNCG 0.015log 0.0009PSA 0.00005Total Energy 0.23a 0.66

_ = + + − _ +DJurs RNCG 0.021log 0.0010PSA 0.010Organic Count 0.23 0.66

aThese descriptors, Total_Energy, Polarizability, MOLWEIGHT, and Electronic_Energy, were calculated and derived from the semiempirical
VAMP/AM1 quantum-chemical wave function.,.
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Figure 2. Next, with eq 4A, the resulting 14 top ES descriptors
are in the second column of Table 5. Comparison of the two
columns of the table shows that one additional, important ES
symbol, dssC, shows up in the second column, at the same time
the rest of ES symbols are in the same order as those in the first
column. In ES terminology, dssC is the symbol of a carbonyl
carbon, with two single-bond linkages and one double bond.
(The “d” in dssC stands for “double bond” and the “s” for
“single bond”.) Every TZD moiety has two carbonyl groups,
and each TZD agonist has at least two counts for this value.
The minus sign of the dssC indicates that the addition of more
carbonyl carbons to the TZD PPARγ agonists can drastically
decrease activity. In other words, this tendency of the ES_
Count_dssC means that the two carbonyl carbons of TZD
indicated by dssC are significant; the ordering is just after the
ES symbol, ssO.
Notably, the ES_Count_dssC ranks in the 45th place when

eq 4B is used but ranks in the second place when eq 4A is used.
This means that the ES_Count_dssC originally was absorbed
into the Jurs descriptor as a common molecular scaffold when
using eq 4B but becomes a significant structural modification
when using eq 4A. An important observation is thus that the
lack-of-modification TZD moiety of the 46 PPARγ agonists
tends to be absorbed into the Jurs_RNCG as part of the

general ligand−receptor interaction. Furthermore, when the
general “shape” of the ligand−receptor interaction is
represented by molecular mass in the division of the Jurs
descriptor into log D, PSA, and mass, the significant structural
moiety (TZD) previously absorbed in the Jurs_RNCG re-
emerges. This shows an advantage of using molecular mass to
represent the general ligand−receptor interaction when the
Jurs_RNCG divided into log D, PSA, and mass. As resulting
outcomes, the top three ES symbols (ssO, dssC, and sssN)
form a pharmacophore of three-point features with a general
shape for this molecular recognition, which were directly
extracted from the ligand-dependent receptor-mediated cellular
data of the 46 TZD PPARγ agonists, through second regression.

6. REAL CORRESPONDENCE AS VALIDATION

There is no regression method currently used for capturing
activity cliffs in a given set because activity cliff itself acts as the
outlier of regression.5 Consequently, there is no currently
available regression validation method for the captured activity
cliffs as well. We have conducted the second regression to
capture the ES descriptors, which stands for the outliers of first
regression. The second regression for capturing the informative
outliers may reflect the real physical situation. Ranking order
can serve as a measure of confidence level for each ES descrip-
tor, and the top captured ES symbols reflect the singular
ligand−receptor interaction. Therefore, one can examine their
actual physical correspondences as validation.
For example, the ES symbols ssO, dssC, and sssN prioritized

in the leading places using eq 4A (Table 5, second column). In
particular, dssC represents the carbonyl carbon in TZD as
discussed above. In Figure 6, the bound crystallographic struc-
ture of rosiglitazone (PDB code: 2PRG)8 is used to examine
the correspondences. Rosiglitazone is a PPARγ drug, a very
important full agonist. And the significant interactions between
the agonist oxygen atom, indicated by ssO, with the sulfurs of
the two specific residues Cys285 and Met364 are at the dis-
tances 3.79 and 4.70 Å, respectively. The distances of the
significant interactions between the two oxygen atoms of the
two agonist carbonyl groups (dssC) with the His449 nitrogen
atom, Gln286 nitrogen atom, and Tyr473 oxygen atom are
2.97, 2.91, and 3.60 Å, respectively. The nitrogen atom of the
rosiglitazone trialkylamine (sssN) extends by 4.44 Å to reach
the Cys285 sulfur atom and by 4.46 Å to reach the backbone
oxygen of Leu340. Therefore, the top-ranked ES symbols

Figure 5. Illustrations of overall molecular description in the subcellular event-based analysis of singular events, significant structural modifications
(ES descriptors), for a set of agonists. A two-stage regression is employed. The descriptors, log D, PSA, and a shape-like descriptor are scaffold-
independent, representing for the combination of general subcellular events.

Table 5. Top Captured ES Descriptorsa using Eqs 4B and 4A

equation 4B equation 4A

ES_Count_ssO ES_Count_ssO
ES_Sum_ssO ES_Count_dssC(−)b

ES_Sum_sssN ES_Sum_ssO
ES_Count_sssN ES_Count_sssN
ES_Count_ssCH2 ES_Sum_sssN
ES_Sum_aaO ES_Sum_aaO
ES_Count_aaO ES_Count_aaO
ES_Count_sCH3 ES_Sum_aaN
ES_Sum_aaN ES_Count_aaN
ES_Count_aaN ES_Count_ssCH2
ES_Count_dsCH ES_Count_dsCH
ES_Sum_dsCH ES_Count_sCH3
ES_Sum_ssS ES_Sum_dsCH
ES_Count_ssS ES_Sum_ssS

ES_Count_ssS
aPrioritized through second regression using eqs 4B and 4A,
respectively. bES_Count_dssC is a negative structural modification.
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prioritized through second regression have their corresponding
singularity interactions.

7. DISCUSSION

Across the 55 NCI human cancer cell lines, log D is the most
crucial factor for the inhibitors. This is not surprising as the
inhibitors need to be dissolved before the in vitro experiment
is performed. However, the partition coefficient, log D, is by
its nature potentially related to another subcellular event, the
solvation−desolvation before inhibitor binding. Recently,
the molecular solvation and desolvation in the presence of
the solvent and receptor have been shown to make a major
thermodynamic contribution to molecular binding, and the
fundamental issue of solvation−desolvation is thus attracting
much attention.18 Here, the log D is postulated to be the
general description of both solvent solubility and ligand
solvation−desolvation before binding.
The identification of PSA as the most crucial descriptor of

the discrepancy between the two types of in vitro biological
assays of the raloxifene analogs,11,12 the cell-free radioligand
binding assay and the cell-based antiproliferation assay, indi-
cates that the membrane transport of a molecule is the most
crucial general subcellular event accounting for the discrepancy
between these two assays, only one of which involves cell
membranes. PSA has been correlated with various types21 of
membrane transport, but the correlation with the membrane as
a subcellular event within a single cell shown by these ER
antagonists is the first such observation. Therefore, based on
these two observations, the descriptor-event correspondence is
postulated to mean that log D and PSA are the two necessary
and essential molecular descriptors for the molecular descrip-
tion of the subcellular events.
As shown in the above section, the Jurs descriptor can be

further divided into log D, PSA, and a shape-like descriptor.

A shape-like descriptor appears to be a description of the general
molecular recognition, given that the overall ligand−receptor
contact area is usually proportional to the energy of the van der
Waals contacts. The molecular mass, a shape-like descriptor, is
here postulated to be a suitable description of general ligand−
receptor interaction that avoids incorporation of significant
structural modifications, singular events. When the Jurs descrip-
tor was divided into three important descriptors, log D, PSA,
and mass, these three essential descriptors are scaffold-inde-
pendent as well as independent of cellular system. The ligand-
dependent cellular system of the same target family may have
the similar scaffolds of ligands.22,23

The functionality of present study is to characterize the sig-
nificant structural modifications of a given set of agonists with
ligand-dependent receptor-mediated data. In this subcellular
event-based molecular description, the view of molecular recog-
nition can have two parts: the binding shape of a molecule can
be described by its molecular mass, as part of general sub-
cellular events, and the significant structural modifications can
be described by the ES descriptors, as singular subcellular
events. Therefore, this molecular recognition can be abstracted
by a pharmacophore of three-point features, ssO, dssC, and
sssN, with a general shape, mass. Taken together, this char-
acterization of singular events of the 46 TZD PPARγ agonists
provides a heuristic approach that through second regression,
with the three essential descriptors, log D, PSA, and mass for all
the possible general subcellular events, the structural modi-
fications, predefined by ES descriptor, of agonists can be statistically
prioritized. Here, the number of descriptors has been kept to a
minimum to avoid possible chance correlations and top cap-
tured ES symbols can find their correspondences.

Figure 6. Illustration of the significant structural modifications of the ES symbols ssO, dssC, and sssN. The X-ray crystallographic image of bound
rosiglitazone (PDB code: 2PRG) shows the singular interactions of the rosiglitazone tyrosine oxygen, indicated by ssO, with the sulfurs of the two
specific residues Cys285 and Met364 at distances of 3.79 and 4.70 Å, respectively. The distances of the singular interactions between the two TZD
carbonyl oxygen, dssC, with the His449 nitrogen, Gln286 nitrogen, and Tyr473 oxygen are 2.97, 2.91, and 3.60 Å, respectively. The distances of the
singular interactions between the TZD trialkylamine nitrogen, sssN, with the sulfur of Cys285 and the sulfur atom of Leu340 are 4.44 and 4.46 Å,
respectively. The overall picture of 2PRG with bound rosiglitazone in black box is shown at lower right.
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8. CONCLUSION

In the present study, the Jurs descriptor was divided into
three important descriptors, log D, PSA, and mass (shape-like
descriptor), revealed by the three selected biological data sets.
Log D is the general description of solvation and desolvation
events, PSA is the general description of membrane transport
events, and mass is the description of general ligand−receptor
interaction event. Figure 5 depicts the overall concept of this
overall event-based description of given agonists with ligand-
dependent receptor-mediated cellular data. Through first
regression, the three descriptors log D, PSA, and mass are
well-characterized as the representative descriptions of over-
all subcellular events of ligand cellular data. These findings
improve our understanding of the descriptor-event relationship
of the subcellular events in cells. Through second regression,
all the ES descriptors of the 46 TZD PPARγ agonists were
prioritized. As shown, the three top ES symbols (ssO, dssC, and
sssN) form a pharmacophore of three-point features with a
general shape that can account for the molecular recognition. In
the end, this two-stage regression suggests a possible analysis of
real ligand−receptor interactions directly from cellular data
with use of minimal, but essential, descriptors
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