林盈廷

高雄醫學大學 生命科學院 生物科技學系 助理教授

第一教學大樓 N1038 室 校內分機: 2792 ytlin@kmu.edu.tw
U. Lin's Presentation

Reference Books

- Physical Chemistry for the Life Sciences (Engel, Drobny and Reid)
- Biophysical Chemistry (James P. Allen)

U. J Lin's Presentation

Lecture

Quantum Chemistry and Spectroscopy (I)

把物質切到最小,我們知道: 它表面上是粒子,實際上是波動。

Tiny Particle Wave equation

- Wind wave
- Airy wave theory
- Wave equation
- Acoustic wave equation
- Vibrations of a circular drum
- Standing wave
- Electromagnetic wave equation
- \bullet Schrödinger equation

Schröedinger equation

Figure 10.4 Erwin Schrödinger (1887-1961). Schrödinger proposed an expression of quantum mechanics that was different from but equivalent to Heisenberg's. His expression is useful because it expresses the behavior of electrons in terms of something we understand-waves. The Schrödinger equation is the central equation of quantum mechanics.

U. J Lin's Presentation

Schröedinger equation

Chapter 13, Physical Chemistry for the Life Sciences (Engel, Drobny and Reid)

U. J. Lin's Presentation

Quantum Chemistry 的七個法則

→ 用來形成 Schröedinger equation

(也就是可用來描述電子的波動方程式)

Y. J. Lin's Presentation

Table 10.2 The postulates of quantum mechanics

Postulate I. The state of a system of particles is given by a wavefunction Ψ , which is a function of the coordinates of the particles and the time. Ψ contains all information that can be determined about the state of the system. Ψ must be single-valued, continuous, and bounded, and $|\Psi|^2$ must be integrable. (Discussed in section 10.2)

Postulate II. For every physical observable or variable O, there exists a corresponding Hermitian operator \widehat{O} . Operators are constructed by writing their classical expressions in terms of position and (linear) momentum, then replacing "x times" (that is, $x \cdot$) for each x variable and $-\mathbf{i}\hbar(\partial/\partial x)$ for each p_x variable in the expression. Similar substitutions must be made for y and z coordinates and momenta. (Section 10.3)

Postulate III. The only values of observables that can be obtained in a single measurement are the eigenvalues of the eigenvalue equation constructed from the corresponding operator and the wavefunction Ψ :

$$
\widehat{O}\Psi = K \cdot \Psi
$$

where K is a constant. (Section 10.3)

Postulate IV. Wavefunctions must satisfy the time-dependent Schrödinger equation:

$$
\widehat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t}
$$

(Section 10.14) (If it is assumed that Ψ is separable into functions of time and position, we find that this expression can be rewritten to get the time-independent Schrödinger equation, $\hat{H}\Psi = E\Psi$.) (section 10.7)

Postulate V. The average value of an observable, $\langle O \rangle$, is given by the expression

$$
\langle O \rangle = \int_{\text{all} \atop \text{space}} \Psi^* \widehat{O} \Psi \, d\tau
$$

for normalized wavefunctions. (Section 10.9)

Postulate VI. The set of eigenfunctions for any quantum mechanical operator is a complete mathematical set of functions.

Postulate VII. If, for a given system, the wavefunction Ψ is a linear combination of nondegenerate wavefunctions Ψ_n which have eigenvalues a.:

$$
\Psi = \sum_{n} c_n \Psi_n \text{ and } \hat{A} \Psi_n = a_n \Psi_n
$$

then the probability that a_n will be the value of the corresponding measurement is $|c_n|^2$. The construction of Ψ as the combination of all possible Ψ _n's is called the *superposition principle*.

Lin's Presentation

Postulate I. The state of a system of particles is given by a wavefunction Ψ , which is a function of the coordinates of the particles and the time. Ψ contains all information that can be determined about the state of the system. Ψ must be single-valued, continuous, and bounded, and $|\Psi|^2$ must be integrable. (Discussed in section 10.2)

Ψ $\Big($ *x* , *y* , *z*)

Postulate II. For every physical observable or variable O, there exists a corresponding Hermitian operator \widehat{O} . Operators are constructed by writing their classical expressions in terms of position and (linear) momentum, then replacing "x times" (that is, $x \cdot$) for each x variable and $-\vec{n}(\partial/\partial x)$ for each p_x variable in the expression. Similar substitutions must be made for y and z coordinates and momenta. (Section 10.3)

 $\hat{O}=-i\hbar(\frac{\partial}{\partial x})$ μ_{r}

U. J Lin's Presentation

lar operators.

"The kinetic energy operator is also symbolized by \widehat{T} .

ation

Postulate III. The only values of observables that can be obtained in a single measurement are the eigenvalues of the eigenvalue equation constructed from the corresponding operator and the wavefunction Ψ :

$$
\widehat{O}\Psi = K \cdot \Psi
$$

where K is a constant. (Section 10.3)

observables

U. J Lin's Presentation

Postulate IV. Wavefunctions must satisfy the time-dependent Schrödinger equation:

$$
\widehat{H}\Psi = i\hbar \frac{\partial \Psi}{\partial t}
$$

time dependent

U. J Lin's Presentation

Postulate V. The average value of an observable, $\langle O \rangle$, is given by the expression

$$
\langle O \rangle = \int_{\text{all}} \Psi^* \widehat{O} \Psi \, d\tau
$$

for normalized wavefunctions. (Section 10.9)

average observables

Y. J. Lin's Presentation

Postulate VI. The set of eigenfunctions for any quantum mechanical operator is a complete mathematical set of functions.

units of h^2 /Bma²

i uj Kōiei

 (13.21)

Postulate VII. If, for a given system, the wavefunction Ψ is a linear combination of nondegenerate wavefunctions Ψ_n , which have eigenvalues a_n :

$$
\Psi = \sum_{n} c_n \Psi_n \quad \text{and} \quad \widehat{A} \Psi_n = a_n \Psi_n
$$

then the probability that a_n will be the value of the corresponding measurement is $|c_n|^2$. The construction of Ψ as the combination of all possible Ψ_n 's is called the *superposition principle*.

可以相加減

$$
\mathcal{X}
$$
 \mathcal{Y} $\mathcal{$

Different Systems

(Chapter $14 \sim$ Chapter 18)

‧不同的系統,

有不同的 Schröedinger equation 的解

U. J Lin's Presentation

Schröedinger equation 的解, 是 Orthogonal。

$$
\int_{-\infty}^{\infty} \psi_i^*(x) \psi_j(x) dx = \begin{cases} 0, i \neq j \\ 1, i = j \end{cases}
$$

 (13.21)

Figure: 13-02EP Copyright © 2008 Pearson Prentice Hall, Inc.

y. L'in's Presentation

Physical Chemistry For the Life Sciences

Pearson International Edition

CHAPTER 15

The Hydrogen Atom and Many -Electron Atoms

U. J Lin's Presentation

Hydrogen Atom

Y. J Lin's Presentation

Energy levels of the H atom

'U. J Lin & Y-resentation

Chapter 13, Physical Chemistry for the Life Sciences (Engel, Drobny and Reid)

resentation

U. J Lin's Presentation

 $\Psi(x, y, z)$ z $r \sin \theta d\phi$ $r d\theta$ $r \sin\theta d\phi$ \overline{dr} $r d\theta$ $rsin_{\theta}$ $\Psi(r,\theta,\phi)$ 'dı dθ \blacktriangleright Y $d\phi$ x^{\perp}

Figure: 13-07 Copyright © 2008 Pearson Prentice Hall, Inc.

Y. J. Lin's Presentation

U. J Lin's Presentation

Each p has a shape much like a dumbbell, •differing in the direction extending into spaceesentation

Y. J Lin's Presentation

Electron Arrangement and Table Peri \bigcirc $\overline{\mathbf{f}}$

- How many electrons can be in the 4d subshell?
	- U. J Lin's Presentation \cdot 10

Electron Spin

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Y. J Lin's Presentation

Copyright @ 2006 Pearson Education, Inc., publishing as Benjamin Cummings

Y. J Lin's Presentation

resentation

Energy-level diagram for the hydrogen atom showing the allowed transitions for $n \leq 6$. Because for $E > 0$, the energy levels are continuous, the absorption spectrum will be continuous above an energy that depends on the initial *ⁿ* value. The different sets of transitions are named after the scientists who first investigated them.

U. J. Lin's Presentation

(a) 3-D perspective and (b) contour plot of $\psi_{100}(r)$. Red and blue contours correspond to the most positive and least positive values, respectively, of the wave function.

U. J Lin's Presentation

Three-dimensional perspective plots of the 1*^s*, 2*^s*, and 3*^s* orbitals. The dashed lines indicate the zero of amplitude for the wave functions. The " \times 2" refers to the fact that the amplitude of the wave function has been multiplied by 2 to make the subsidiary maxima apparent.

 $W.D.L$ in's Presentation

Plot of $a_0^{3/2}R(r)$ versus r/a_0 for the first few H atomic orbitals.

 $W.T.L$ in's Presentation

Contour plot for the orbitals indicated. The colors red and blue indicate the most positive and least positive values, respectively, of the wave function amplitude. Distances are in units of a_0 .

V. J Lin's Presentation

3-D perspective plots of the square of the wave functions for the orbitals indicated. The numbers on the axes are in units of a_0 .

FIGURE 15.8 Plot of $a_0^3 R^2(r)$ lot of $a_0^3 R^2(r)$ versus $r/a₀$ for the first few H atomic orbitals. The numbers on the horizontal axis are in units of a_0 .

 $W.T.L$ in's Presentation

Plot $\vec{\alpha}_0^T R^2(r)$ versus r/a_0 for the first few H atomic orbital. The curves for *n* = 2 and *ⁿ* = 3 have been displaced vertically as indicated. The position of the principal maxima for each orbital is indicated by an arrow.

 $W.T.L$ in's Presentation

The radial probability distribution evaluated for $z =$ 0 is plotted in the $x = y$ plane with lengths in units of *a*₀. Darker regions correspond to greater values of the function. The sharp circle in a classical shell model becomes a broad ring in a quantum mechanical model over which the probability of finding the electron varies. Less intense subsidiary rings are also observed for the 2*^s* and 3*^s* orbitals.

 $W.D.Lin's \text{Presentating}$

Helium Atom

Y. J. Lin's Presentation

The top image shows the proton and two electrons that need to be considered for correlated electron motion. The bottom image shows that if the position of electron 2 is averaged over its orbit, electron 1 see a spherically symmetric charge distribution due to the helium nucleus and electron 2.

 $W.T.L$ in's Presentation

Radial probability distributions for the 3*^s*, 3*p*, and 3*d* orbitals of the H atom as a function of distance in units of a_0 .

 $W.T.L$ in's Presentation

 (a)

 $2s$

ls.

for most atoms is described by the red line.

 (b)

J Lin's Presentation

The covalent atomic radius, first ionization energy, and electronegativity are plotted as a function of the atomic number for the first 55 elements. Dashed vertical lines mark the completion of each period.

U. J Lin's Presentat P. 378

 η . J Lin's Presentation

H_2 ⁺

Y. J. Lin's Presentation

Physical Chemistry For the Life Sciences

Pearson International Edition

CHAPTER 16 Chemical Bonding in Diatomic Molecules

 r_b The two protons and the electron are shown at one instant in time. The quantities R , r_a , and r_b represen^t the distances between the charged particles.

U. J. Lin's Presentation

The potential energy of the H_2^+ molecule is shown for two different values of R (red curves). At large distances, the electron will be localized in a 1*^s* orbital either on nucleus *a* or *b*. However, at the equilibrium bond length *Re*, the two Coulomb potentials overlap, allowing the electron to be delocalized over the whole molecule. The blue curve represents the amplitude of the atomic (top panel) and molecular (bottom panel) wave functions, and the solid horizontal lines represent the corresponding energy eigenvalues.

P. 385

The amplitude of two H 1*^s* atomic orbitals is shown along an axis connecting the atoms. The overlap is appreciable only for regions in which the amplitude of both Aos is significantly different from zero. Such a region is shown in yellow.

Y. J. Lin's Presentation

Schematic energy functions $E(R)$ are shown for the g and u states in the approximate solution discussed. The zero of energy corresponds to widely separated H and H⁺ species.

Y. J. Lin's Presentation

Molecular wave functions ψ_{g} and ψ_{u} (solid lines), evaluated along the internuclear axis, are shown in the top two panels. The unmodified $(\zeta = 1)$ H 1*s* orbitals from which they were generated are shown as dashed lines. The bottom panel shows a direct comparison of ψ_g and ψ_u .

U. J Lin's Presentation

Contour plots of ψ_{g} (left) and ψ_{u} (right). The minimum amplitude is shown as blue, and the maximum amplitude is shown as red for each plot. The dashed line indicates the position of the nodal plane in ψ_u .

The upper two panels show the probability densities ψ_g^2 and ψ_u^2 along the internuclear axis for the bonding and antibonding wave functions. The dashed lines show $\frac{1}{2} \psi_{H1S_a}^2$ and $\frac{1}{2} \psi_{H1S_b}^2$, which are the probability densities for unmodified $(\zeta = 1)$ H 1*s* orbitals on each nucleus. The lowest $\psi^2_{H1S_b}$ panel shows a direct comparison of ψ_g^2 and ψ_u^2 . Both molecular wave functions are correctly normalized in three dimensions.

U. J Lin's Presentation

 ψ_g^2 FIGURE 16.8 ψ_u^2 ψ^2_{g}

 η . J Lin's Presentation

Contour plots of $\Delta \psi_g^2$ (top) and $\Delta \psi_u^2$ (bottom). The red areas in the top image correspond to positive values for $\Delta \psi_g^2$, and the gray area corresponds to negative values for $\Delta \psi_{g}^{2}$. The blue area in the bottom image corresponds to negative values for $\Delta \psi_u^2$, and the red areas just outside of the bonding region correspond to positive values for $\Delta \psi_u^2$. The color in the corners of each contour plot corresponds to $\Delta \psi^2 = 0$.

 $W.D.Lin's$ Presentation

FUGURE 16.10

The overlap between two 1*s* orbitals ($\sigma + \sigma$), a 1*s* and a 2 p_x or 2 p_y ($\sigma +$ π), and a 1*s* and a $2p_7$ (σ + σ) are depicted from left to right. Note that two shaded areas in the middle panel have opposite signs, so the net overlap of these two atomic orbitals of different symmetry is zero.

Y. J. Lin's Presentation

Molecular orbital energy diagram for a qualitative description of bonding in H_2 and HF. The atomic orbitals are shown to the left and right, and the molecular orbitals are shown in the middle. Dashed lines connect the MO with the Aos from which it was constructed. Shaded circles have a diameter proportional to the coefficients c_{ii} . Red and blue shading signifies positive and negative signs of the AO coefficients,

respectively.

P. 394

Variation of overlap with internuclear distance for *s* and *p* orbitals.

 $y. T$ *Lin's* Presentation

Contour plots of several bonding and antibonding orbitals of H_2^+ . Red and blue contours correspond to the most positive and least positive amplitudes, respectively. The yellow arrows show the transformation (x, y, z) \rightarrow (-*x*, -*y*, -*z*) for each orbital. If the amplitude of the wave function changes sign under this transformation, it has u symmetry. If it is unchanged, it has g symmetry.

U. J. Lin's Presentation

TABLE 16.1 Molecular Orbitals Used to Describe Chemical Bonding in Homonuclear Diatomic Molecules

 $y. T$ in's Presentation

MOs based on the ground and excited states for H_2^+ generated from 1*s*, 2*s*, and 2*p* atomic orbitals. Contour plots are shown on the left and line scans along the path indicated by the yellow arrow are shown on the right. Red and blue contours correspond to the most positive and least positive amplitudes, respectively. Dashed lines and curves indicate nodal surfaces. Length are in units of a_0 , and $R_e = 2.00 a_0$.

P. 398

FIGURE 16.14

(continued)

 $\eta.\mathcal{I}$ in's Presentation

FIGURE 16.14

(continued)

V. J. Lin's Presentation

FIGURE 16.14 (continued)

 η . J Lin's Presentation

V. J. Lin's Presentation

(continued)

 $y.$ J.Lin's Presentation

FIGURE 16.14 (continued)

 η . J. Lin's Presentation

(continued)

V. J. Lin's Presentation

Contour plots for $1\sigma_{g}$ (top), $3\sigma_{u}^{*}$ (center), and $1\pi_{u}$ (bottom) H_{2}^{*} MOs with ζ values appropriate to F₂. Red and blue contours correspond to the most positive and least positive amplitudes, respectively. Dashed lines indicate nodal surfaces. Light circles indicate position of nuclei. Length are in units of a_0 , and $R_e = 2.66 a_0$.

P. 399

Atomic and molecular orbital energies and occupation for H_2 and He₂. Upward- and downwardpointing arrows indicate α and β spins. The energy splitting between the MO levels is not to scale.

V. J Lin's Presentation

Schematic MO energy diagram for the valence electrons in F_2 . The degenerate p and π orbitals are shown slightly offset in energy. The dominant atomic orbital contributions to the MOs are shown as solid lines. Minor contributions due to *^s*-*p* mixing have been neglected. The MOs are schematically depicted to the right of the figure. The $1\sigma_{g}$ and $1\sigma_{u}^{*}$ MOs are not shown.

Y. J. Lin's Presentation

P. 401

FIGURE 16.18

Schematic MO energy diagram for the valence electrons in N_2 . The degenerate p and π orbitals are shown slightly offset in energy. The dominant AO contributions to the MOs are shown as solid lines. Lesser contributions arising from *^s*-*p* mixing are shown as dashed lines. The MOs are schematically depicted to the right of the figure. The $1\sigma_{g}$ and $1\sigma_{u}^{*}$ MOs are not shown.

Relative molecular orbital energy levels for the second row diatomic (not to scale). Both notations are given for the molecular orbitals. The $1\sigma_{g}$ (σ_{g} 1*s*) and $1\sigma_u^*(\sigma_u^* 1s)$ orbitals lie at much lower values of energy and are not shown. (not to scale.)

U. J Lin's Presentation

Bond energy, bond length, and vibrational force constant of the first 10 diatomic molecules as ^a function of the number ofelectrons in the molecule. The upper panel shows the calculated bond order for these molecules. The dashed line indicates the dependence of the bond length on the number of electrons if the He_2 data point is omitted.

U. J. Lin's Presentation

Schematic energy diagram showing the relationship between the atomic and molecular orbital energy levels for the valence electrons in HF. The degenerate *p* and π orbitals are shown slightly offset in energy. The dominant atomic orbital contributions to the MOs are shown as solid lines. Lesser contributions are shown as dashed lines. The MOs are depicted to the right of the figure.

P. 405

The 3σ , 4σ , and 1π MOs for HF are shown from left to right.

 $y. T$ L'in's Presentation

The grid shows a surface of constant electron density for the HF molecule. The fluorine atom is shown in green. The color shading on the grid indicates the value of the molecular electrostatic potential. Red and blue correspond to negative and positive values, respectively.

 $W.D.Lin's$ Presentation

 (b)

Questions Q16.10

 (c)

Questions Q16.10 (continued)

 $y. T$ in's Presentation

V. J Lin's Presentation

V. J Lin's Presentation

 $y.$ J.Lin's Presentation

 $y.$ J. L'in's Presentation

 $y.$ J. Lin's Presentation

V. J Lin's Presentation

 $y.$ J.Lin's Presentation

 $y.$ J.Lin's Presentation

Questions Q16.29

 $y. T$ L'in's Presentation

Problems P16.18

$y. T$ L'in's Presentation

Problems P16.20

 $y.$ J.Lin's Presentation

 (b)

Problems P16.22

 $y.$ J.Lin's Presentation

 $y. T$ L'in's Presentation

Physical Chemistry For the Life Sciences

Pearson International Edition

CHAPTER 17

Molecular Structure and Energy Levels for Polyatomic Molecules

FIGURE 17.1

Ethanol depicted in the form of a ball-and-stick model.

 η . J Lin's Presentation

Lewis Structure

 $W.D.Lin's$ Presentation

FIGURE 17.2

Examples of correctly predicted molecular shapes using the VSEPR model.

 $U.\mathcal{I}$ in's Presentation

FIGURE 17.3

Geometry of the *sp*2-hybrid orbitals used in Equation (17.1). In this and in most of the figures in this chapter, we use a "slimmed down" picture of hybrid orbitals to separate individual orbitals. A more correct form for *^s*-*p* hybrid oritals is shown in Figure 17.5 .

TABLE 17.1 C—C Bond Type

 $y. T$ L'in's Presentation

Bonding in BeH₂ using two *sp*hybrid orbitals on Be. The two Be-H hybrid bonding orbitals are shown separately.

The top panel shows the arrangement of the hybrid orbitals for sp^2 and sp^3 carbon. The bottom panel shows a schematic depiction of bonding in ethene (left) and ethane (right) using hybrid bonding orbitals.

 $W.T.L$ in's Presentation

Directed hybrid bonding orbitals for H₂O. The black lines show the desired bond angle and orbital orientation. Red and blue contours correspond to the most positive and least positive values of the amplitude.

 $W.D.Lin's$ Presentation

The valence MOs occupied in the ground state of water are shown in order of increasing orbital energy. The MOs are depicted in terms of the AOs from which they are constructed. The second column gives the MOs symmetry, and the third column lists the dominant AO orbital on the oxygen atom.

I Lin's Presentation

Coordinate system used to generate the hybrid orbitals on the oxygen atom that are suitable to describe the structure of H_2O .

 $\eta.\mathcal{I}.$ in's Presentation

The first five valence MOs for H₂O are depicted. The $1b_1$ and $3a_1$ MOs are the HOMO and LUMO, respectively. Note that the $1b_1$ MO is the AO corresponding to the nonbonding $2p_x$ electrons on oxygen.

 $\eta.$ T Lin's Presentation

Molecular orbital energy-level diagram for H_2O at its equilibrium geometry. To avoid clutter, minor AO contributions to the MOs and the 1a₁ MO generated from the O1*s* AO are not shown.

Schematic variation of the MO energies for water with bond angle. The symbols used on the left to describe the MOs are based on symmetry considerations and are valid for 2 $\theta < 180^{\circ}$.

V. J Lin's Presentation

Interaction between two species A and B. The difference in energies between the HOMO and LUMO orbitals on A and B will determine the direction of charge transfer.

 $W.Lin's \text{Presentating}$

(a) Two dipolar HCl molecules with this relative orientation attract one another. (b) Two dipolar HCl molecules with this relative orientation repel one another. (c) The dipolar HCl molecule indices a dipole moment in N_2 . (d) Two N_2 molecules experience a net attractive interaction through the time fluctuating dipole moments on each molecule.

 $W.T.Lin's$ Presentation

The Lennard-Jones potential of Equation (17.5) is plotted against the reduced length *r*/^σ.

TABLE 17.2 Values for the Lennard-Jones Parameters ε and ^σ

 η . J Lin's Presentation

The crystal structure of hexagonal ice, which is the most stable solid phase at 1 bar, is shown. Note that hydrogen bonds connect each of the atoms in the water molecule to its neighbors.

 $W.D.Lin's$ Presentation

Hydrogen bonding between thymine and adenine and between guanine and cytosine are the dominant interactions that stabilize the double helix structure of DNA.

U. J Lin's Presentation

Problems P17.2

 $y. T$ Lin's Presentation

End of Lecture

版權聲明:

本講義所使用之圖片皆由教科書出版商提供或是由網路上下載使用,同時內容安排及 呈現順序為林盈廷老師上課解說,與其學生課後複習之用。禁止任何其他講述者及商 業行為之未經授權的複製與使用。

Y. J. Lin's Presentation

Slide Downloading

http://ytlab.kmu.edu.tw

